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A B S T R A C T

Current traditional topology optimization primarily focuses on single-domain design, practical engineering 
structures often require multi-domain assemblies with geometric complexity, material heterogeneity, and 
localized load demands. This paper proposes a novel polygon topology optimization framework of assemblies, 
addressing the need for adaptive mesh strategies across subdomains. The proposed approach overcomes key 
limitations of traditional single-domain optimization by enabling seamless integration of non-matching meshes 
with diverse material properties through subdomain-specific discretization. The framework automatically en-
forces compatibility at interfaces without remeshing by utilizing S-elements of Scaled Boundary Finite Element 
Method (SBFEM) to connect different mesh types while maintaining equilibrium. A generalized node-to-node 
coupling scheme is employed to handle multi-material interfaces, accommodating both anisotropic and 
isotropic material combinations. The method incorporates an efficient SIMP-based optimization with subdomain- 
dependent volume constraint. Adaptive mesh strategies further enhance computational efficiency relative to 
uniform mesh method, as demonstrated in practical applications such as automotive floor frame. By eliminating 
ad-hoc post-processing, the framework provides a unified workflow from mesh assembly to optimized design. 
Numerical examples confirm the method’s effectiveness in handling variable mesh densities, practical assembly 
constraints, and complex geometries structures.

1. Introduction

Assembly structures, comprising interconnected components 
designed to achieve system-level performance, are fundamental to 
modern engineering applications ranging from mechanical engineering 
[1] to building designs [2], and aerospace systems [3]. Conducting 
optimization design for assembly structures can effectively prevent is-
sues of misalignment or insufficient compatibility that may arise when 
optimizing individual parts, and greatly meet the higher performance 
requirements and complex design needs. In recent years, the effective 
integration of topology optimization techniques with assembly structure 
optimization has provided a promising approach to achieving 
high-performance assembly structures.

Since the pioneering work of Bendsøe and Kikuchi [4], many to-
pology optimization methods have been proposed. These include the 
Solid Isotropic Material with Penalization (SIMP) method [5], the 

Evolutionary Structural Optimization (ESO) method [6], the Level Set 
Method (LSM) [7], and the Moving Morphable Component [8] (MMC) 
method. While traditional topology optimization has made significant 
strides in single-domain design, the optimization of multi-component 
assemblies presents unique challenges stemming from geometric 
complexity, material heterogeneity, and localized load demands. Cur-
rent approaches to assembly optimization often either treat the system 
as a monolithic domain (losing component-specific design control) or 
optimize parts separately (risking interface incompatibilities). In early 
work, Jiang and Chirehdast [9] optimized the distribution of fixed 
geometric component connections, extending structural topology opti-
mization to system design. Chickermane and Gea [10] proposed a model 
and domain definition approach to address multi-component system 
design, enabling structural topology optimization of interconnection 
locations. Li et al. [11] applied the traditional ESO method to connected 
components, thereby developing a comprehensive approach to 
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multi-component structural topology optimization.
The literatures [12,13] developed a method for synthesizing 

multi-component structural assemblies in a continuous domain, where 
optimized structures are automatically partitioned during the optimi-
zation process. This greatly enhances the ability to represent complex 
structural geometries observed in actual products. Guirguis et al. [14,
15] utilized a kriging-interpolated level set extension for 
multi-component topology optimization, aiming to improve optimiza-
tion efficiency by reducing the number of design variables. However, 
these studies were based on non-gradient methods, which are consid-
ered unsuitable for topology optimization of continuum structures due 
to their lack of sensitivity and associated computational inefficiencies 
[16]. To address this, Zhou and Saitou [17] extended previous re-
searches by proposing a gradient-based, continuously relaxed 
multi-component topology optimization method, achieving structural 
optimization of stamped sheet metal assemblies. This method was later 
adapted for applications in additive manufacturing (MTO-A) [18], 
composite materials (MTO–C) [19], die casting (MTO-D) [20], and 
thin-walled structural component optimization [21]. Additionally, a 
structural topology optimization method for the overall layout of 
multi-component structures [22–25] has been developed rapidly. By 
introducing movable components into the design domain, this method 
allows for the simultaneous optimization of component layout and 
supporting structure topology. Building on practical assembly re-
quirements, Thomas et al. [26] incorporated common interface 
connection methods—such as screws, welds, or rivets—into periodic 
component assembly optimization. Related works include methods for 
the simultaneous topology optimization of parts and their connection 
locations [27] and sequential topology optimization for 
multi-component systems [28]. While these methods have shown 
promise in specific applications like stamped assemblies or additive 
manufacturing, they share a critical limitation: they assume either 
conforming meshes or require expensive remeshing procedures at ma-
terial interfaces. This becomes particularly problematic when dealing 
with assemblies combining different mesh types (e.g., polygonal 
stress-concentration regions with quadrilateral bulk domains) or dis-
similar materials (e.g., anisotropic composites joined to isotropic 
substrates).

These limitations become especially pronounced when addressing 
assemblies that combine geometrically complex components with ma-
terial dissimilarities - a common scenario in modern engineering sys-
tems. Conventional approaches attempt to resolve such challenges either 
during optimization through domain partitioning or in post-processing 
through connection design, inevitably compromising either solution 
optimality or computational efficiency. In contrast, our framework shifts 
the paradigm to the pre-processing stage, where the assembly’s funda-
mental characteristic - geometric complexity, material heterogeneity, 
and load requirements - can be addressed before optimization begins. At 
the finite element modeling stage, each component is discretized inde-
pendently using subdomain-optimal meshes (e.g., polygonal elements 
for stress concentrations, quadrilaterals for regular regions), then 
assembled through a node-to-node coupling scheme [29,30] that: 1. 
Automatically enforces compatibility at interfaces without remeshing, 2. 
Preserves the local mesh fidelity of each subdomain, 3. Naturally gen-
erates polygonal transition elements at interfaces.

The geometric adaptability of polygonal elements proves particu-
larly advantageous for optimizing complex assembly structures, where 
irregular component shapes and material interfaces demand flexible 
discretization capabilities. While conventional polygonal topology 
optimization relies heavily on Wachspress interpolation [31–34]. 
However, for implementing the polygonal finite element method (FEM), 
domain integration on arbitrarily shaped polygonal elements and the 
interpolation construction for various types of polygons are relatively 
complex. As a semi-analytical and semi-numerical method that does not 
require fundamental solutions, the scaled boundary finite element 
method (SBFEM) can easily analyze and solve complex polygonal 

elements. Since then, researches on topology optimization based on 
SBFEM have largely focused on the framework of hierarchical tree mesh 
division. Egger et al. [35] leveraged the polyhedral characteristics of 
SBFEM elements on quadtree and octree meshes to address the chal-
lenges posed by hanging nodes, thereby improving computational effi-
ciency. Zhang et al. [36] further advanced this direction by integrating 
the MMC method into a 3D SBFEM framework, enabling the generation 
of topologies with smooth and well-defined boundaries. Gao et al. [37] 
presented a fluid topology optimization method utilizing a quadtree 
SBFEM. More recently, Su et al. [38–40] introduced an SBFE-BESO 
scheme driven by automatic imaging techniques, which significantly 
improves robustness and computational performance by investigating 
static analysis, dynamic behavior, and practical engineering applica-
tions. Most of the existing SBFEM-based topology optimization re-
searches are focused solely on hierarchical tree mesh partitioning 
frameworks. In the context of multi-domain assembly mesh connections, 
the inherent characteristics of boundary discretization give SBFEM high 
flexibility in mesh transformation [41,42].

This study presents an integrated topology optimization framework 
specifically developed for assembled structures, addressing the critical 
challenges of multi-domain systems through a novel combination of 
SBFEM and SIMP methodologies. At its core, the proposed approach 
introduces an assembly-oriented implementation of SBFEM that directly 
accommodates polygonal transition elements at component interfaces 
while preserving mechanical equilibrium across dissimilar meshes 
through its boundary discretization scheme. By unifying SBFEM’s 
polygonal element analysis capabilities with SIMP-based material dis-
tribution optimization and subdomain-dependent constraint enforce-
ment, the framework achieves concurrent optimization of connection 
topology and material layout while maintaining load-path continuity 
across domain boundaries. Unlike conventional component-level ap-
proaches, this method treats the assembly as an integrated yet adaptable 
system, where each component retains its optimal discretization 
(polygonal or quadrilateral) while interface regions are automatically 
optimized as functional transition zones.

The remainder of the paper is organized as follows: Section 2 pre-
sents the mesh connection scheme for multi-domain assemblies; Section 
3 introduces the fundamental concepts of SBFEM; Section 4 details the 
formulation and solution of the multi-domain topology optimization 
problem; Section 5 provides numerical examples to validate the pro-
posed method; finally, Section 6 concludes the paper and discusses 
future research directions.

2. Assembly connection scheme

2.1. Multi-domain assembly diagram

The proposed assembly connection scheme establishes a novel 
paradigm for multi-domain topology optimization by implementing 
component integration at the finite element preprocessing stage. Unlike 
conventional approaches, which treat each component as a separate 
domain optimized individually during the topology optimization pro-
cess and only assemble them in post-processing through Boolean oper-
ations, rigid connections, or welds-often resulting in interface 
discontinuities or material redundancies. Our study completes assembly 
connections prior to finite element modeling. The interfaces are auto-
matically generated as transition elements by SBFEM, ensuring inte-
grated and coordinated optimization of the entire structure.

At the core of this methodology lies a physics-aware node-to-node 
connection scheme that transforms traditionally problematic non- 
matching interfaces into optimized transition zones. As illustrated in 
Fig. 1, each subdomain maintains its ideal discretization pattern - 
whether polygonal for stress-concentrated regions, quadrilateral for 
regular geometries, or specialized honeycomb configurations for light-
weight designs. This component-specific meshing strategy preserves 
local accuracy while accommodating material heterogeneity through 
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customized elasticity matrices for isotropic and anisotropic material 
assignments.

2.2. Specific implementation steps

2.2.1. Step 1: identify assembly subdomains
First, identify the components (subdomains) intended for assembly, 

such as Domain 1, Domain 2, and Domain 3 in the figure. Additionally, 
assign different material properties to each subdomain based on design 
requirements, represented by green, red, and blue colors in the figure for 
three different materials. In this study, we consider both isotropic and 
anisotropic materials for structural optimization. For isotropic mate-
rials, the elasticity matrix D is given by: 

D=
E

1 − μ2

⎡

⎣
1 μ 0
μ 1 0
0 0 (1 − μ)/2

⎤

⎦ (1) 

where E is the Young’s modulus, μ is Poisson’s ratio.
For anisotropic materials, we use a simplified orthotropic material 

model [43]. In this model 

E1 = Ef Ffib + Em
(
1 − Ffib

)

E2 =
Ef Em

EmFfib + Ef
(
1 − Ffib

)

G12 =
Gf Gm

GmFfib + Gf
(
1 − Ffib

)

μ12 = μf Ffib + μm
(
1 − Ffib

)

μ21 = μ12
E2

E1

(2) 

where Ef, μf and Gf represent the Young’s modulus, Poisson’s ratio, and 
shear modulus of the reinforcing material, respectively. Em, μmand 
Gmrepresent the Young’s modulus, Poisson’s ratio, and shear modulus of 
the matrix material, respectively. Ffibrepresents the fiber volume frac-
tion. The elasticity of anisotropic material model can be expressed as: 

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

E1

1 − μ12μ21

E1μ21

1 − μ12μ21
0

E1μ21

1 − μ12μ21

E2

1 − μ12μ21
0

0 0 G12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3) 

Fig. 1. Multi-domain assembly meshes connection diagram.
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2.2.2. Step 2: construct mesh models
Each subdomain identified in Step 1 undergoes independent mesh-

ing. Any displacement-based polygonal element type is feasible. This 
paper provides three mesh types: non-uniform polygonal mesh, quad-
rilateral mesh, and approximated polygonal mesh with honeycomb 
feature, as shown in Fig. 2. Where Mesh 1 is primarily generated using 
the PolyMesher tool [44], which combines Voronoi partitioning with a 
boundary optimization strategy to ensure boundary conformity and in-
ternal quality. In addition, the Mesh 3 is constructed by connecting the 
centroids of a regular triangulation [45]. Different mesh types can 
significantly meet the needs of engineering design and analysis, espe-
cially for design domains with complex boundaries. Mesh types 1 and 3 
are particularly effective in achieving accurate domain discretization.

2.2.3. Step 3: multi-domain mesh connection
The connection process begins with precise geometric parameteri-

zation of interface boundaries (Fig. 3a), where nodal compatibility is 
established through parametric coordinate matching. Boundary nodes 
from adjacent subdomains are intelligently merged, with new transition 
nodes inserted only where necessary to maintain mesh quality. The 
scheme’s true innovation emerges in its automatic generation of 
polygonal S-elements at these junctions, leveraging SBFEM’s inherent 
flexibility to create mechanically sound transitions between dissimilar 
meshes [38,39]. This process naturally handles challenging scenarios 
such as quadrilateral-to-polygonal connections or mixed material in-
terfaces without artificial stiffness penalties.

Fig. 3(a) illustrates a straight line defined by two boundary nodes. 
The origin of the coordinate system is set at Point A, and the distance 

between Points A and B is denoted as 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x2
B + y2

B

√

. Considering a query 
point, such as Point C, the twice the area of the triangle formed by Points 
A, B and C equal|xCyB − yCxB|. When the height of the triangle is zero, 
the point (i.e., the boundary node of the other domain mesh) lies on the 
line.

Furthermore, the two meshes are connected at the interface, and 
duplicate nodes are removed to generate the Multi-domain mesh. Based 
on this, the node indices are reassigned. Fig. 3(b) demonstrates the 
process of connecting the boundaries of the two domain meshes and 
shows the boundary element node indices of Mesh (a) and Mesh (b). 
Where Mesh (a): is {[122, 123, 144, 143, 121], [142, 143, 144, 161, 
160]} and Mesh (b) is {[91, 90, 100, 101]}. After mesh connection, the 
element indices become: {[186, 196, 197, 198, 182, 173], [182, 198, 
199, 200, 184, 174], [197, 214, 215, 199, 198]}.

2.2.4. Step 4: obtain the assembly mesh model
Following Step 3, boundary nodes are inserted into the interface of 

the adjacent subdomain. The line elements along the interface are then 
divided by the new nodes into two shorter line segments, which serve as 
new boundary edges for the redefined polygonal elements, as illustrated 
in Fig. 3(c). The resulting assembly maintains all component-specific 
mesh advantages while functioning as a unified computational model. 

Crucially, the assembled structure preserves key features for subsequent 
topology optimization, including clear material interfaces, consistent 
load paths, and adaptable boundary conditions. And it eliminates the 
computational overhead of iterative remeshing while avoiding the 
artificial stiffness common in post-processed assemblies. Most impor-
tantly, it provides the foundation for integrated topology optimization 
where both material distribution and connection topology evolve 
simultaneously during the design process - a capability demonstrated in 
Section 4’s SBFEM-SIMP implementation.

3. Solving polygon element based on SBFEM

3.1. Problem description

The essence of the assembly connection proposed in this paper is to 
transform independent single-domain meshes into multi-domain 
compatible meshes. Initially, the independent meshes are incompat-
ible because displacement continuity cannot be enforced at the nodes. 
However, using the S-elements of SBFEM, the meshes can be modified to 
match at their interfaces. Once converted to a compatible polygonal 
mesh, the system can be readily solved using SBFEM, provided a scaling 
condition is met (i.e., the scaling center must be visible across the 
boundary). It is important to note that this study focuses on linear 
elasticity.

The two-dimensional linear elasticity problem [42], a typical 
boundary value problem in mechanics, is governed by three control 
equations: the physical equation, the geometric equation, and the 
equilibrium equation. In vector form, these equations can be expressed 
as follows: 
⎧
⎨

⎩

σ = Dε
ε = Lu

LTσ + f =0
inΩ (4) 

where σ represents the stress field, D is the elasticity matrix, ε represents 
the strain field, L represents the strain-displacement matrix, f represents 
the body force vector.

3.2. Scaled boundary finite element solution

As a semi-analytical, semi-numerical boundary element method, the 
SBFEM was first introduced by Song and Wolf [46]. SBFEM combines 
the characteristics of the finite element method without fundamental 
solutions and the boundary element method with dimension reduction, 
making it well-suited for solving problems with polygonal elements.

Consider an example of boundary-connected elements, as illustrated 
in Fig. 4. Here, each element is treated as a scaled boundary finite 
element. In the figure, O represents the scaling center, which in this 
study is defined as the centroid of the polygonal element. Lines 
extending from the scaling center to each edge of the polygon create 
subdomains, as shown in Fig. 4(b). These subdomains can be described 

Fig. 2. Mesh types, (a) non-uniform polygonal mesh, (b) quadrilateral mesh, (c) approximated polygonal mesh with honeycomb feature.
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using scaled boundary coordinates (ξ, η), where ξ denotes the radial 
coordinate, ranging from 0 at the scaling center to 1 at the boundary, 
and η denotes the circumferential coordinate, with a range of [− 1,1].

To solve the aforementioned element, we first need to perform a 
coordinate transformation, specifically from Cartesian coordinates to 
scaled boundary coordinates [47]. The coordinates (x, y) of any point 
within the domain can then be expressed as: 

x = x0 + ξN(η)x
y = y0 + ξN(η)y (5) 

where (x0, y0) represents the coordinates of the scaling center, while x 
and y are vectors denoting the coordinates of the nodes on the boundary. 
The term N(η) represents a one-dimensional shape function, defined as 
N = [N1 N2] = [(1-η)/2 (1+η)/2].

According to the principle of virtual work, and disregarding body 
forces, the equilibrium condition is given by: 
∫

V
δε(ξ, η)Tσ(ξ, η)dV −

∫

V
δu(η)Tt(η)dS (6) 

where δε denotes the virtual strain, δu denotes the virtual displacement, 
and t represents the boundary traction.

This equation can be further simplified as follows: 

δuT
b
(
E0u(ξ),ξ + ET

1u(ξ)
⃒
⃒ξ=1

)
− δuT

b p

−

∫ 1

0
δu(ξ)T

(

E0ξ2u(ξ),ξξ +
(
E0 + ET

1 − E1
)
u(ξ),ξ − E2

1
ξ

u(ξ)
)

dξ = 0
(7) 

where ub and prepresent the nodal displacements and equivalent nodal 
forces on the boundary, respectively. The terms E0, E1and E2denote the 
coefficient matrices, defined as follows: 

E0 =

∫

∂Ω
B1(η)TDB1(η)|J|dη

E1 =

∫

∂Ω
B2(η)TDB1(η)|J|dη

E2 =

∫

∂Ω
B2(η)TDB2(η)|J|dη

(8) 

where B1 and B2 represent the strain and displacement relationship, 
defined as: 

B1(η) =
1
|J|

⎡

⎢
⎢
⎣

y(η),η 0

0 − x(η),η
− x(η),η y(η),η

⎤

⎥
⎥
⎦Nu(η)

B2(η) =
1
|J|

⎡

⎢
⎢
⎣

− y(η) 0

0 x(η)

x(η) − y(η)

⎤

⎥
⎥
⎦Nu(η),η

(9) 

where Nu is the interpolation function, defined as Nu = [N1I2×2 N2I2×2], 
I2×2 represents the 2 × 2 identity matrix. The Jacobian matrix J is 
defined as: 

J =

[
x(η) y(η)

x(η),η y(η),η

]

(10) 

According to Eq. (6), we obtain the required scaled boundary finite 
element equation as: 

E0ξ2u(ξ),ξξ +
(
E0 +ET

1 − E1
)
u(ξ),ξ − E2

1
ξ

u(ξ) (11) 

By transforming the second-order differential equation into a first- 
order differential equation, we obtain a differential equation 

Fig. 3. Connection details of boundary elements, (a) find point on line, (b) before connection, (c) after connection.

Fig. 4. Scaled boundary polygon, (a) S-domain, (b) subdomain.
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ξ
{

u(ξ)
q(ξ)

}

,ξ
= Z

{
u(ξ)
q(ξ)

}

=

[
− E− 1

0 ET
1 E− 1

0

E2 − E1E− 1
0 ET

1 E1E− 1
0

]{
u(ξ)
q(ξ)

}

(12) 

where Z is the Hamiltonian coefficient matrix, which facilitates the use 
of eigenvalue decomposition for improved computational efficiency and 
stability. This approach provides a semi-analytical solution for each 
polygonal element, significantly reducing the time required for stiffness 
matrix assembly, and is particularly well-suited for unstructured 
polygonal meshes. Furthermore, it can be decoupled into pairs of ei-
genvalues using an eigenvalue decomposition as 

ZΦ = Z

[
Φu

n Φu
p

Φq
n Φq

p

]

=

[
Φu

n Φu
p

Φq
n Φq

p

][
Λn

Λp

]

(13) 

where, Φ is a transformation matrix with independent column vectors, 
Λn and Λp contain the eigenvalues with negative and positive real parts 
resulting from the eigenvalue decomposition, representing solutions for 
bounded and unbounded fields, respectively. The eigenvalues are sorted 
in ascending order based on their real parts. Correspondingly, the ei-
genvectors are partitioned in a similar manner, where the submatrices 
Φu

nandΦq
nassociated with the bounded domain solution.

Using Eq. (12), the solution to Eq. (11) can then be expressed as: 

u(ξ) = Φu
nξ− Λn c

q(ξ) = Φq
nξ− Λn c

(14) 

where, c represents the integration constant, which are determined 
based on the boundary conditions and can be defined by the nodal 
displacements ub = u(ξ)|ξ = 1on the polygon boundary 

c =
(
Φu

n
)− 1ub (15) 

Further, the stiffness matrix for the polygonal element can be ob-
tained as follows: 

k = Φq
n
(
Φu

n
)− 1 (16) 

4. Topology optimization for multi-domain

4.1. Material selection

For topology optimization, selecting appropriate materials is crucial, 
as different material properties influence structural performance. 
Building upon the assembly connection scheme established in Section 2, 
each subdomain maintains independent material definitions while 
participating in the unified optimization process. The framework ac-
commodates both isotropic and anisotropic material models through 
customized elasticity matrices. This material flexibility enables targeted 
property assignment to different assembly components while ensuring 
mechanical consistency at interfaces through the SBFEM formulation.

4.2. SBFEM-SIMP optimization framework

The proposed multi-domain topology optimization framework in-
tegrates SBFEM with SIMP approach to address the unique challenges of 
assembled structures. This methodology extends conventional topology 
optimization by simultaneously considering three critical aspects: (1)
subdomain-specific material properties, (2) interface compatibility, and 
(3) global structural performance. The relationship between the mate-
rial’s elastic modulus and density is given by: 

Ed(xi) = Emin,d + x̃ρ
i,d
(
Ed − Emin,d

)
(17) 

where, Emin,d represents the elastic modulus of a low-stiffness material 
element in d subdomain, and ρ is the penalty factor. The element den-
sity, denoted as x̃i,d, can be defined: 

x̃d = Hxd (18) 

where ̃xdand xd represent the density vectors before and after filtering in 
d subdomain, respectively. H denotes the filter matrix, which is defined 
as: 

H =
max

(
0,

⃒
⃒Ωi,d

⃒
⃒
(
1 −

⃒
⃒xj,d − xi,d

⃒
⃒
/
R
))

∑
k∈S(j)

⃒
⃒Ωi,d

⃒
⃒
(
1 −

⃒
⃒xj,d − xi,d

⃒
⃒
/
R
) (19) 

where, S(j) denotes the set of neighboring elements for element Ωi,d, xj,d 
and xi,d represent the centroids of elements, respectively. R is the filter 
radius.

The topology optimization problem, aimed at minimizing structural 
compliance with a volume constraint, can be formulated as follows: 

Min
x

: C(x,u) = fTu

S.t. : g =

∑
vi,dx̃i,d

∑
vi,d

− Vf

K(x)u = f

(20) 

where, f and u represent the load and displacement vectors, respectively. 
K is the global stiffness matrix, and vi,d is the volume of element i.

In the context of topology optimization, sensitivity analysis is critical 
to determining how the objective function changes with respect to the 
design variable x. For the assembly structure optimization, sensitivity 
analysis is used to evaluate how variations in the density field impact the 
structural compliance. The derivative of structural compliance with 
respect to the design variables is given by 

∂C
∂x

=
∂C
∂x̃

∂x̃
∂x

= − HT
∑md

d=1

∑mi

i=1
xdx̃

ρ− 1
i,d uT

i,d
(
Φq

n
(
Φu

n
)− 1)

i,dui,d (21) 

where md and mi are the number of subdomains and the number of 
subdomain elements respectively. And the partial derivative of the 
volume with respect to the design variables is: 

∂g
∂x

= HTV

/
∑md

d=1

∑mi

i=1
vi,d (22) 

where V represents element volume vector.

4.3. Design variable update

In topology optimization, design variables need to be updated in 
order to iteratively optimize the structure’s shape and material distri-
bution. For assembly structures, the update of design variables enables 
the collaborative optimization of individual parts within the assembly, 
allowing the overall system’s strength, stiffness, and stability to reach 
optimal levels under the best material and structural distribution. This 
paper uses the optimization criterion (OC) method [31] mentioned in 
reference for updating the design variables. 

x∗
i,d = xmin,d +

⎛

⎜
⎜
⎝

−
∂f

∂xi,d

⃒
⃒
⃒
⃒
x=x0

λ ∂f
∂xi,d

⃒
⃒
⃒
⃒
x=x0

⎞

⎟
⎟
⎠

1
1− a

(
x0

i,d − xmin,d

)
(23) 

where the "reciprocal" variable a is taken as − 1. Note that the update of 
the design variables depends on the associated Lagrange multiplier λ, 
and needs to be controlled within the following constraints using the 
upper and lower limits (xmax,d, xmin,d)of the density variable: 

X. Li et al.                                                                                                                                                                                                                                        Engineering Analysis with Boundary Elements 179 (2025) 106355 

6 



xnew
i,d =

⎧
⎪⎪⎨

⎪⎪⎩

x+
i,d, x

∗
i,d ≥ x+

i,d

x−
i,d, x

∗
i,d ≥ x−

i,d

x∗
i,d, otherwise

(24) 

where x+
i,d and x−

i,d are the boundaries of the search region, given by the 
following equation: 

x+
i,d = max

(
xmax,d, x0

i,d + δ
)
, x−

i,d = max
(

xmax,d, x0
i,d − δ

)
(25) 

Additionally, the conventional OC method is not applicable for 
multi-constraint problem. As an extension of the OC framework, ZPR 
optimization scheme [48], addresses this limitation by leveraging the 
separability of the dual problem of a convex approximated atomic 
subproblem with respect to the Lagrange multipliers. This allows the 
update of design variables under each volume constraint to depend 
solely on its corresponding multiplier. The detailed implementation of 
this method for polygonal topology can be found in Reference [33] and 
is therefore not repeated here.

5. Numerical examples

5.1. Infinite plane with a hole

This benchmark study provides essential validation of our assembly 
framework’s core capability to maintain mechanical accuracy across 
connected subdomains. Computation is performed on a PC with 12th 
Gen Intel(R) Core (TM) i7–12700F 2.10 GHz CPU and 16 GB RAM. An 
infinite plane with a radius r = 0.4 m hole is subjected to remote uniaxial 
uniform tension p = 1 kPa. The displacement analytical solution for this 
problem is expressed in polar coordinates (α, θ) as follows: 

ux =
pr
8G

[
α
r
(1 + κ)cosθ +

2r
α ((1 + κ)cosθ + cos3θ) −

2r3

α3 cos3θ
]

uy =
pr
8G

[
α
r
(κ − 3)sinθ +

2r
α ((1 − κ)sinθ + sin3θ) −

2r3

α3 sin3θ
] (26) 

Where κ is the Kolosov constant, defined as 

κ =

⎧
⎪⎨

⎪⎩

3 − μ
1 + μ forplanestress

3 − 4μforplanestrain
(27) 

To model this problem, we approximate the infinite plate with a 
circular hole by substituting it with two rectangular domains above and 
below the hole, each with dimensions of 2 m × 1 m. The exact 
displacement solution at the hole’s edge is used as the boundary con-
dition along the four sides of the resulting square when the two rect-
angular domains are connected, as shown in Fig. 5. Additionally, the 
Young’s modulus for both domains is set to 103 kPa.

First, the mesh is generated separately for the assumed regions above 
and below the circular hole, as shown in Fig. 6(a) and Fig. (b). Fig. 6(c)

displays the multi-domain mesh model created by connecting these two 
domains. To better observe the boundary connection method, the cor-
responding element nodes and boundary nodes (indicated by black 
circles) are highlighted. We also present the deformed displacement 
contour plot in Fig. 6(d). For comparison, we consider a single-domain 
mesh of the infinite plate under the same settings, as shown in Fig. 7, 
which includes both the mesh and the displacement contour plot. From 
the displacement contours, it can be observed that due to the influence 
of the boundary mesh connection, there are slight differences in the 
displacement distribution between the multi-domain and single-domain 
contour plots.

To further investigate the impact of multi-domain and single-domain 
meshes on solution accuracy, we introduce the relative displacement 
error norm (Nrde) for verification, which is mathematically expressed as: 

Nrde =
‖ uexa − u ‖

‖ uexa ‖
(28) 

where uexa and u represent the analytical and numerical displacement 
solutions, respectively. The displacement error norm for both mesh 
types (polygonal elements) under different degrees of freedom is pre-
sented in Table 1, and the corresponding comparison curve is shown in 
Fig. 8. From the results, it can be seen that the displacement accuracy of 
the multi-domain mesh is slightly lower than that of the single-domain 
mesh, but still achieves a good level of solution accuracy. The results 
demonstrate that our node-to-node coupling scheme introduces only 
marginal accuracy loss while preserving critical load paths. These results 
establish two critical foundations for subsequent engineering applica-
tions: (1) quantified verification of assembly accuracy, (2) demonstra-
tion of uninterrupted load path continuity.

5.2. Corbel beam

This example mainly validates the feasibility of topology optimiza-
tion for multi-domain assembly-connected structures. To achieve this, 
we investigate the problem from two aspects: multi-domain connection 
mode, and mesh type for connection. First, we present the single-domain 
corbel beam with its corresponding quadrilateral mesh, optimized to-
pology and compliance as shown in Fig. 9. Where the design domain, 
boundary conditions, and load conditions are visually displayed in Fig. 9 
(a). In this study, different subdomains use the same isotropic material, 
with a Young’s modulus of 1 and a Poisson’s ratio of 0.3. The beam has a 
length of L = 2, with the top and bottom fixed and a downward force of 
magnitude 1.5 applied at the right end. The filter radius is set to 0.15, 
and the volume fraction is set to 0.25.

5.2.1. Multi-domain connection mode
Fig. 10 shows four different assembly connection modes, including: 

Mode 1 (Assembly of Domain 1 with 500 elements, Domain 2 with 500 
elements, Domain 3 with 500 elements, Domain 4 with 500 elements), 
Mode 2 (Assembly of Domain 1 with 1500 elements and Domain 2 with 
500 elements), Mode 3 (Assembly of Domain 1 with 500 elements, 
Domain 2 with 1000 elements, and Domain 3 with 500 elements) and 
Mode 4 (Assembly of Domain 1 with 1000 elements, Domain 2 with 500 
elements, and Domain 3 with 500 elements). First, the subdomains are 
determined, and their mesh discretization is carried out. Then, based on 
the design requirements, the subdomains are connected, resulting in the 
mesh discretization of the multi-domain assembly structure, as shown in 
Fig. 11.

Further, based on the above mesh discretization, structural topology 
optimization is performed on the assembled multi-domain structure, 
yielding the corresponding topological configurations and structural 
compliances shown in Fig. 12. The results demonstrate that performing 
topology optimization on multi-domain assembly connections is 
feasible.

The corbel beam example systematically evaluates four distinct Fig. 5. Illustration of the infinite plate with a circular hole.

X. Li et al.                                                                                                                                                                                                                                        Engineering Analysis with Boundary Elements 179 (2025) 106355 

7 



assembly configurations with varying subdomain divisions and element 
distributions. The optimized results demonstrate remarkable consis-
tency in structural performance, with compliance values under the four 
modes showing relative errors of only 1.017 %, 0.468 %, 0.173 %, and 
0.096 %, respectively, compared to the baseline single-domain config-
uration (Fig. 9(c)) with a compliance of 155.98. These confirm the 
framework’s robustness to different connection schemes while main-
taining optimal load paths. Notably, the material distributions show 
only localized differences at interfaces without compromising global 
structural integrity, proving the method’s ability to adapt to diverse 
assembly requirements.

5.2.2. Multi-domain mesh types
In this example, we focus on the structural topology optimization of 

multi-domain mesh connections for different domain mesh types. The 
mesh types selected are the three types shown in Fig. 2. The mesh 
connection method follows the approach in Figs. 10(a) and (b), where 
the number of elements per unit area is kept approximately the same. 

Fig. 6. Mesh discretization of the multi-domain. (a) Domain 1, (b) Domain 2, (c) Connected domains, (d) Displacement contour plot.

Fig. 7. Single-domain. (a) Mesh discretization, (b) Displacement contour plot.

Table 1 
Relative displacement error norm for multi-domain and single-domain mesh 
discretization.

Multi-domain Single-domain

Element numbers DOF Nrde Element numbers DOF Nrde

200 806 3.01E-3 200 812 2.91E-3
600 2402 9.21E-4 600 2400 8.51E-4
1200 4788 4.24E-4 1200 4800 4.07E-4
2400 9558 1.94E-4 2400 9594 1.86E-4
4800 19,182 8.90E-5 4800 9584 8.61E-5

Fig. 8. Comparison curve of Nred between multi-domain and single-domain 
mesh discretization.
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Figs. 13(a) and (b) show the multi-domain mesh discretization after 
assembly connection. To facilitate observation of the connection details, 
enlarged images of the corners are provided. It can be observed that 
even with different types of meshes, the subdomains can still be well- 
connected, further confirming that this mesh connection method has 
good applicability. Based on this assembly connection, corresponding 
topological configurations are generated as shown in Fig. 13(c) and 
Fig. 13(d).

The example further verifies the framework’s unique capability to 

handle heterogeneous mesh combination. Three fundamentally 
different mesh types - including irregular polygons and structured 
quadrilaterals - are successfully integrated while preserving: (1) inter-
face stress continuity, (2) geometric compatibility, and (3) optimization 
convergence. The resulting topologies exhibit smooth material transi-
tions across mesh boundaries. This flexibility is particularly valuable for 
practical engineering where components often require different dis-
cretization strategies.

Fig. 9. Single-domain corbel beam, (a) schematic diagram, (b) quadrilateral mesh, (c) topology configuration.

Fig. 10. Assembly connection mode, (a) Mode 1, (b) Mode 2, (c) Mode 3, (d) Mode 4.

Fig. 11. Mesh connection of the assembled multi-domain structure, (a) Mode 1, (b) Mode 2, (c) Mode 3, (d) Mode 4.
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5.3. Automotive floor frame

To validate the effectiveness of multi-material structural optimiza-
tion in multi-domain assembly connections, a simplified automotive 
floor frame was modeled as the optimization design object. As shown in 
Fig. 14, the design domain has a dimension of L = 6. The midpoints of 
the top, bottom, left, and right boundaries are fixed, and loads of 
magnitude 0.5 are applied at the specified positions. Additionally, there 
are two non-designable regions located at both the top and bottom ends 
of the model. The automotive floor frame is constructed using five do-
mains (Domain 1-Domain 2-Domain 3-Domain 4-Domain 5) connected 
through the proposed assembly method, as depicted in Fig. 15. The 
corresponding mesh connection scheme is illustrated in Fig. 16, with the 
number of mesh elements in each domain being 512-512-2400-874-874. 
It is important to note that subsequent structural optimization will be 
conducted based on this mesh connection scheme. The filter radius is set 
to 1, and the volume fraction is set to 0.4.

Fig. 12. Topological configurations, (a) Mode 1, (b) Mode 2, (c) Mode 3, (d) Mode 4.

Fig. 13. Different mesh types for multi-domain mesh and corresponding topological configurations.

Fig. 14. Schematic diagram of a single-domain automotive floor 
frame structure.
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5.3.1. Multi-material topology optimization
In addition, this example considers three simple anisotropic mate-

rials for optimization design. Domains 1 and 2 share the same material, 
while Domains 4 and 5 share another identical material. The material 
property parameters for Eq. (2) are assigned as follows: Ef = 1, Em = 1/ 

15, μf = 0.22, μf = 0.38, Gf = Ef /2
(

1 + μf

)
,Gm = Em /2(1 + μm). Three 

different materials (Mat1, Mat2, Mat3) with varying fiber volume frac-
tions (Ffib = 0.1/0.6/1) are employed and represented by three colors: 
green, blue and red. The elastic matrices of the three materials are 
shown as follows 

DMat1 =

⎡

⎢
⎢
⎣

0.1704 0.0285 0

0.0285 0.0783 0

0 0 0.0267

⎤

⎥
⎥
⎦,DMat2 =

⎡

⎢
⎢
⎣

0.6391 0.0439 0

0.0439 0.1545 0

0 0 0.0555

⎤

⎥
⎥
⎦,

DMat3 =

⎡

⎢
⎢
⎣

1.0509 0.2312 0

0.2312 1.0509 0

0 0 0.4098

⎤

⎥
⎥
⎦

(29) 

Different materials are assigned to each subdomain (Domain 1- 
Domain 2-Domain 3-Domain 4-Domain 5) for structural topology opti-
mization, as shown in Fig. 17. The table includes eight material as-
sembly schemes, covering single-material multi-domain assemblies, 

two-material assemblies, and three-material assemblies. For clarity, 
three colors are used to represent the materials: green for Mat1, blue for 
Mat2, and red for Mat3.

As observed from Fig. 17, conducting structural topology optimiza-
tion for anisotropic, multi-material, and multi-domain assemblies is 
feasible. Each configuration produces reasonable topologies with well- 
distributed materials across the subdomains and good continuity at 
the assembly connections. However, from the perspective of structural 
support for the automotive floorboard, single-material assembly con-
nections reveal certain shortcomings. When only Mat1 is considered, the 
top and bottom domains (Domain4 and Domain5) lack sufficient ma-
terial support. Similarly, when only Mat2 is used, the central domain 
(Domain3) exhibits significant deficiencies. In contrast, the three topo-
logical configurations optimized with two materials effectively mitigate 
these issues.

Furthermore, topology optimizations with three-material assemblies 
are explored. We evaluated the following combinations, Option 1: Mat1- 
Mat1-Mat2-Mat3-Mat3, Option 2: Mat1-Mat1-Mat3-Mat2-Mat2 and 
Option 3: Mat2-Mat2-Mat3-Mat1-Mat1. Fig. 18 shows the variation of 
structural compliance with iteration steps for the three assembly 
schemes. It is worth noting that compliance refers to the overall 
compliance of the assembled structure consisting of all subdomains. The 
figure also includes the iteration process for Option 2′s topology. The 
results indicate that the iteration curves converge quickly and steadily, 
without significant oscillations, demonstrating the algorithm’s robust-
ness. Among the three options, Option 2 achieves the best overall per-
formance in terms of the design objective, structural reasonableness, and 
convergence speed. In contrast, Option 1 results in higher compliance 
values, and Option 3 exhibits deficiencies in the final topology.

5.3.2. Topology optimization of different element collocation
The studies above are conducted under the assumption of approxi-

mately uniform element sizes across subdomains. In practical engi-
neering applications, especially in assembly structures, high-precision 
subdomains often employ finer meshes, while low-precision subdomains 
use coarser meshes. This approach balances optimization accuracy and 
efficiency.

Based on this principle, Option 1 of the three-material assembly are 
selected for a comparative study to evaluate the influence of different 
mesh distributions on structural topology. Since the configurations of 
Domain 1, Domain 2, and Domain 3 remained relatively stable in the 

Fig.15. Schematic diagram of the assembly connection of 5 subdomains.

Fig. 16. Mesh connection scheme for the multi-domain assembly.

X. Li et al.                                                                                                                                                                                                                                        Engineering Analysis with Boundary Elements 179 (2025) 106355 

11 



two cases, these domains are treated as low-precision regions with 
reduced mesh density. Conversely, Domain 4 and Domain 5 are treated 
as high-precision regions, maintaining their original mesh density. 
Three mesh distribution schemes (Scheme 1, Scheme 2 and Scheme 3) 
are defined for Domain 1-Domain 2-Domain 3-Domain 4-Domain 5 as 
288-288-2400-874-874, 512-512-2400-1688-1688 and 1152-1152- 
5000-1688-1688, respectively. The filter radius is adjusted to 0.8 and 
the other parameters remain unchanged.

The corresponding meshes and topological configurations shown in 
Table 2. It can be observed that for Scheme 2, which features a mesh 
assembly with varying element sizes, the method remains feasible. 
Comparing the three mesh schemes, the topology configurations of 
Domains 1, 2, and 3 (low-precision domains) exhibit minimal differ-
ences, while the configurations of Domains 4 and 5 (high-precision 
domains) show noticeable variations. In Scheme 1, Domains 4 and 5 lack 
a distinct support structure.

Table 3 presents the structural compliance and the time consumed at 
various stages of the optimization process. From the perspective of 
structural compliance, there is an increasing trend from Scheme 1 to 
Scheme 3. The increase in iteration time mainly stems from the need to 
compute the constitutive stiffness of each polygonal element in SBFEM 
via eigenvalue decomposition (see Eq. (13) for details). In high- 
resolution meshes, the computational cost of eigenvalue solving rises 
significantly. Although the increase in element number improves 

Fig. 17. Topological configurations under various material assembly schemes.

Fig. 18. Compliance iterative curves for three-material assembly connections.
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solution accuracy, it also leads to higher compliance values (i.e., larger 
displacements). In combination with the topology configuration, from 
the point of view of time, Scheme 2 strikes a balance by employing low- 
density meshes in low-precision domains, thereby significantly reducing 
the overall optimization time while maintaining topology integrity.

The adaptive mesh resolution study provides compelling evidence of 
the framework’s computational efficiency and practical scalability. By 
strategically allocating finer meshes to high-stress regions while main-
taining coarser discretization in less critical areas, the method achieves 
an optimal balance between accuracy and computational cost. The 
balanced Scheme 2 configuration delivers nearly identical topological 
features to the high-resolution Scheme 3 while reducing total compu-
tation time by 28. This highlights the method’s potential for large-scale 
engineering applications. However, we also acknowledge possible 
computational bottlenecks in such scenarios.

5.4. Building structure

A truncated elliptical building structure with dimensions H = 15 and 
L = 30, as shown in Fig. 19(a), is utilized to study the impact of sub-
domain volume constraints on structural optimization. The design 
domain consists of five subdomains (Domain 1-Domain 2-Domain 3- 
Domain 4-Domain 5), with non-designable regions introduced at the 
boundaries between Domain 2, Domain 3, Domain 4, and Domain 5. The 
corresponding mesh assembly connection scheme for each subdomain is 
shown in Fig. 19(b), in which non-uniform polygonal mesh and 
approximated polygonal mesh with honeycomb feature are selected, and 
subdomains’ mesh numbers are 800, 1745, 1500, 2084, and 1500, 
respectively, represented in magenta, yellow, green, blue, and red. Since 

this example primarily focuses on the effects of constraints, all sub-
domains are modeled using the same isotropic material with an elastic 
modulus E = 1 and a Poisson’s ratio μ = 0.3. Constraints are applied at 
the bottom of the design domain, and a force of magnitude 1 is applied at 
the top. The filter radius is set to 1.

Table 4 shows the optimized configurations under various volume 
constraint ratios. It is worth noting that, as this example addresses a 
multi-constraint problem, the ZPR optimization scheme has been 

Table 2 
Meshes and topological configurations under different schemes.

Table 3 
Structural compliance and time of each stage under different schemes.

Compliance Time

Mesh Analysis Optimization Sum

Scheme 1 544.43 6.44 2.07 13.95 22.46
Scheme 2 547.76 8.77 2.66 17.36 28.79
Scheme 3 569.44 11.32 4.16 24.68 40.16

Fig. 19. The building structure, (a) the design domain and (b) the mesh as-
sembly connection.
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employed. To facilitate observation, the five previously mentioned 
colors are used to represent the topology of each subdomain in the 
optimization results.

From the above table, it can be observed that the proposed multi- 
domain assembly-connected structural topology optimization method 
is equally applicable to multi-constraint scenarios. Under different vol-
ume ratios, the structural topologies exhibit noticeable variations. When 
the volume constraint for Domain 1 is greater than or equal to 0.5 (e.g., 
0.5 or 0.65), material support is generated in the middle of Domain 1, 
which extends through Domain 2, forming branches in Domain 3 that 
connect to Domains 4 and 5. In contrast, when the volume fraction is 
0.45, the support originates in Domain 2. Based on the structural 
compliance values, it is evident that a higher material proportion in the 
subdomains closer to the top load results in better structural perfor-
mance. For a more direct comparison, we also provide the topology of a 
single-domain structure under a single constraint. It can be observed 
that the material is more concentrated near the top load location.

Crucially, the framework maintains compatibility between non- 
uniform polygonal and honeycomb meshes while respecting non- 
designable boundaries, proving its versatility for architectural applica-
tions. Compared to single-domain optimization, this approach expands 
design flexibility by allowing engineers to strategically redistribute 
material across subdomains without remeshing. Designers can tailor 
their design goals by assigning different constraints to meet their specific 
needs, demonstrating excellent potential for practical engineering 
applications.

6. Conclusions

This study presents a novel integrated optimization framework for 
multi-domain assemblies, addressing the critical challenges of geometric 
complexity, material heterogeneity, and localized load demands in 
practical engineering structures. The proposed framework combines the 
SBFEM with the SIMP approach to enable seamless integration of non- 
matching meshes and diverse material properties across subdomains. 
Key contributions of this work include: 

1. Assembly-Oriented SBFEM implementation: The framework lever-
ages SBFEM’s polygonal element analysis capabilities to enforce 
compatibility at interfaces without remeshing, preserving mechani-
cal equilibrium across dissimilar meshes. The automatic generation 

of polygonal transition elements at junctions ensures smooth load- 
path continuity.

2. Subdomain-Specific optimization: By allowing independent meshing 
and material assignment for each subdomain, the method accom-
modates localized design requirements while maintaining global 
structural performance. The integration of anisotropic and isotropic 
material models further enhances flexibility.

3. Computational efficiency: Adaptive mesh strategies and the elimi-
nation of iterative remeshing significantly reduce computational 
overhead, as demonstrated in numerical examples such as the 
automotive floor frame and building structure.

4. Robustness and versatility: Numerical experiments validate the 
framework’s effectiveness in handling variable mesh densities, 
multi-material interfaces, and complex geometries. The method 
achieves consistent performance across different assembly configu-
rations and constraint scenarios.

The proposed framework bridges the gap between single-domain 
topology optimization and practical multi-component assembly 
design, providing a unified workflow from mesh assembly to optimized 
design. While the method shows great promise, several limitations 
remain. Currently, it is restricted to two-dimensional linear elastic 
problems, and the SBFEM requires the scaling center visibility condition, 
which may necessitate subdivision of certain concave polygons. Addi-
tionally, multi-domain coupling only enforces displacement continuity 
and does not yet handle normal stress constraints at interfaces. 
Extending the framework to three-dimensional structures holds signifi-
cant potential but also introduces challenges such as increased compu-
tational complexity and more complex geometry representation. 
Addressing these limitations in future work will broaden the method’s 
applicability to more complex and realistic engineering problems. 
Overall, this approach offers a promising pathway for advancing high- 
performance engineering system design in fields including automotive, 
aerospace, and civil engineering.
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